
Python Syllabus
Machine Learning course included all concepts of
• Python
• Mathematics Linear Algebra & statics
• Data processing and visualization
• All Machine Learning algorithms
• Examples & case studies with practical
• Deep learning algorithms
• Assignments
• Real time application projects in micro hardware & electronics
Duration
navratri special discount offer
50%
Available Seats
30
Schedule
Weekly:- 5.00 pm - 7.00 pm
WeekEnd:- Saturday - Sunday : 11:00 am - 2:00 pm
1 Python Fundamentals
a. Basic python programming need for machine learning

2 NumPy
2.1 Computer Programming and Programming Languages a. Perform Mathematical operation needed for ML in python using NumPy package

3 Pandas
a. Using pandas package Perform Data manipulations.

4 Math’s Linear Algebra
a. Basic mathematics linear Algebra for ML.

5 Math’s Statistics
a. Basic mathematics Statistics for ML.

6 Hypothesis Testing
a. Case studies using mathematics

7 Data Visualizations
7 a. Using Data visualization packages show data in graphical state

8 Data Analysis
a.In Data Analysis perform data extraction methods

9 Simple Multiple Linear Regression
a. Multiple Linear Regression ML algorithm
b. Examples and Case studies

10 Multiple Linear Regression
a. Learn Multiple Linear Regression ML algorithm
b. Examples and Case studies

11 Gradient Descent
a. Optimization Technique
b. Differential Mathematics

12 KNN
a. Learn KNN ML algorithm
b. Examples and Case studies

13 Model Performance Metrics
a. Performance calculation of ML algorithms

14 Model Selection Part1
a. Best ML model section technique

15 Naive Bayes
a. Learn Naive Bayes ML algorithm
b. Examples and Case studies

Logistic Regression
a. Learn Logistic Regression ML algorithm
b. Examples and Case studies

Support Vector Machine (SVM)
a. Learn Support Vector Machine (SVM) ML algorithm
b. Examples and Case studies

Decision Tree
a. Learn Decision Tree ML algorithm
b. Examples and Case studies

Ensembling
a. Ensembling Concepts
b. Examples and Case studies

Model Selection Part2
a. Best ML model section technique

Unsupervised Learning
a. Learn Kmeans ML algorithm.
b. Examples and Case studies

Dimension Reduction
a. ML Data dimensions reduction concepts Using PCA

Advanced Machine Learning Algorithms
a. Optimal Solution
b. Regularization
c. Ridge and Lasso
d. Model Selection

5.Deep Learning
a. Learn Neural Network ML algorithm
b. Examples and Case studies
